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Abstract— Accurate coronary lumen segmentation on
coronary-computed tomography angiography (CCTA) images
is crucial for quantification of coronary stenosis and the
subsequent computation of fractional flow reserve. Many
factors including difficulty in labeling coronary lumens, various
morphologies in stenotic lesions, thin structures and small
volume ratio with respect to the imaging field complicate
the task. In this work, we fused the continuity topological
information of centerlines which are easily accessible, and
proposed a novel weakly supervised model, Examinee-Examiner
Network (EE-Net), to overcome the challenges in automatic
coronary lumen segmentation. First, the EE-Net was proposed
to address the fracture in segmentation caused by stenoses by
combining the semantic features of lumens and the geometric
constraints of continuous topology obtained from the centerlines.
Then, a Centerline Gaussian Mask Module was proposed to
deal with the insensitiveness of the network to the centerlines.
Subsequently, a weakly supervised learning strategy, Examinee-
Examiner Learning, was proposed to handle the weakly
supervised situation with few lumen labels by using our EE-Net
to guide and constrain the segmentation with customized prior
conditions. Finally, a general network layer, Drop Output Layer,
was proposed to adapt to the class imbalance by dropping
well-segmented regions and weights the classes dynamically.
Extensive experiments on two different data sets demonstrated
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that our EE-Net has good continuity and generalization ability
on coronary lumen segmentation task compared with several
widely used CNNs such as 3D-UNet. The results revealed our
EE-Net with great potential for achieving accurate coronary
lumen segmentation in patients with coronary artery disease.
Code at http://github.com/qiyaolei/Examinee-Examiner-Network.

Index Terms— 3D accurate coronary lumen segmentation,
weakly supervised learning, examinee-examiner network, center-
line Gaussian mask module, examinee-examiner learning, drop
output layer, CT angiography image.

I. INTRODUCTION

ACCURATE coronary lumen segmentation with stenoses
on coronary-computed tomography angiography (CCTA)

images, which obtains accurate segmentation quality in regions
with stenoses, plays a pivotal role in Coronary Artery Dis-
ease (CAD) diagnosis and treatment. Clinically, functional
coronary artery stenosis can be detected effectively and
non-invasively using the FFR-CT [1] technique which depends
on the computational fluid dynamics (CFD) simulation with
the well-delineated coronary lumen in CCTA images [2].
Therefore, the accurate coronary lumen segmentation with
stenoses obtains the well-delineated coronary lumen automat-
ically and fleetly, thus becoming a key prerequisite for the
accurate estimation of FFR-CT and assisting the radiologists to
locate and diagnose the stenosis, to plan the further treatment
method.

Deep neural networks (DNNs) have been widely used in
tissue and organ segmentation [3], but it is still a challenging
task for accurate coronary lumen segmentation with stenoses
owing to the following difficulties: Challenge 1: Difficult
labeling. The coronary lumen on the cross-sectional planes
presents a morphology with small areas and fuzzy boundaries
(Fig. 1(b)) and manual annotation needs to be drawn slice by
slice on the planes along the vessels. It is a time-consuming
labor work to delineate the contours, so that the amount
of labeled data used for training is limited, leading to the
low generalization on the network. Challenge 2: Stenotic
lesions. Due to the compression of the plaques, the coro-
nary lumen is abnormally narrowed and forms the stenotic
lesions (Fig. 1(a)(b)). Stenosis makes the coronary lumen have
different morphological features from those in the healthy
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Fig. 1. The challenges of accurate coronary lumen segmentation with
stenoses. a) shows the sharp narrowing caused by plaque. The normal diameter
of the artery is about 3.3mm, while the diameter is only 1.3mm in the stenosis
regions. b) shows the stenosis on the cross-sectional plane. Lumen is deformed
by plaque compression. c) shows the small volume ratio. Lumen accounts for
less than 0.05%.

regions, which will lead to the underfitting of the network,
thus causing the fracture of the segmentation in regions with
stenoses. Challenge 3: Thin structures. The normal diameter
of the coronary lumen is between 2 mm and 5 mm, while
it is only about 1 mm in stenosis regions(Fig. 1(a)). Such
thin structures have numerous hard-to-segment regions and
will make the network more prone to over-segmentation or
under-segmentation. Challenge 4: Small volume ratio. The
coronary lumen only accounts for less than 0.05% in CCTA
images (Fig. 1(c)) which makes the target and the background
have large-scale differences. The differences cause the class
imbalance so that the network will show weak segmentation
on the minority classes.

To accomplish the accurate coronary lumen segmentation
with stenoses, we proposed a novel end-to-end model, called
Examinee-Examiner Network (EE-Net). It simulates the mode
that the Examinee Network (E1-Net) implements the segmen-
tation task while the Examiner Network (E2-Net) facilitates the
supervision from the weakly supervised label and evaluates
the segmentation results of E1-Net, and they cooperate to
acquire preferable segmentation quality. In detail, our EE-Net
has completed three assignments. 1) E1-Net realizes the end-
to-end coronary lumen segmentation using lumen labels to
learn semantic features from pixel-to-pixel. 2) E2-Net cus-
tomizes the prior condition of the geometric constraints by
extracting the continuous topological structure information of
the centerline. 3) E2-Net applies the prior condition to evaluate
the segmentation result of E1-Net and gives the feedback to
optimize the E1-Net. Based on EE-Net, we made detailed
designs for each challenge mentioned above:

A. Addressing Challenge 1 and 2

Weakly supervised learning strategy [4] is suitable for
dealing with the lack of annotations caused by the difficult
labeling. However, some previous weakly supervised strate-
gies [3], [5], [6] cannot be applied to our task due to the
inadaptability to thin and changeable segmentation and the
loss of continuity. Fortunately, the centerlines have more
concentrated continuity topology information which can be
used as the weakly supervised label. And the automated
centerline extraction is convenient [7]–[9], which inspires

us to propose a novel weakly supervised learning strategy,
Examiner-Examinee Learning (EE-Learning), in our EE-Net.
Different from the Student-Teacher in the combination mode
and the task of each network, we call our strategy EE-Learning
instead of the student-teacher strategy. The E2-Net learns the
relationship between the lumen labels and the continuous topo-
logical features of the centerline labels as a prior condition,
to constrain the E1-Net to satisfy the segmentation results
with a continuous topological structure. Therefore, when the
data only with the centerline labels are available, the E2-Net
evaluates the segmentation results from the E1-Net directly
using the prior conditions, thus achieving good results on the
weakly labeled dataset.

As a weakly supervised label, the centerlines have more
concentrated continuity topology information which is suitable
for dealing with the segmentation fracture caused by the
stenotic lesions. However, the centerlines are composed of a
series of voxels and accounts for a small proportion, which
makes it difficult for the network to pay attention. We proposed
the Centerline Gaussian Mask (CGM) Module to enhance
the extracted features of the centerlines, which makes it
easier for the network to focus on the continuous structure
information.

B. Addressing Challenge 3 and 4

The majority classes are easy to converge, while the minor-
ity classes are difficult thus forming the hard-to-segment
regions. Therefore, we proposed a general network layer,
DropOutput Layer (DO-Layer), which will dynamically adapt
to the learning process to alleviate the class imbalance prob-
lem. Our Drop Output Layer drops well-segmented regions in
the output map and weights the classes dynamically. In this
way, the network will give hard-to-segment regions more
training opportunities and show superior performance on the
minority classes.

To summarize, our work realizes the accurate coronary
lumen segmentation with stenoses and the specific contribu-
tions are three-fold:

• We proposed a novel end-to-end model, EE-Net, to serve
the weakly supervised labels and realize the segmen-
tation. Our EE-Net customizes the prior condition of
the geometric constraints by extracting the continuous
topological features of the centerlines and embedded the
customized prior conditions into the network to constrain
and optimize the segmentation results. To improve the
sensitiveness of the network to the continuity topology
features, CGM Module is proposed to enhance the center-
lines. In the analysis, the internal and external test data are
used simultaneously, which fully verifies the effectiveness
of our model.

• We proposed a novel weakly supervised learning strategy,
EE-Learning, to handle the weakly supervised situation.
When the weakly supervised data only with the centerline
labels are available, the E2-Net evaluates the segmen-
tation results from the E1-Net directly using the prior
customized conditions generated before, thus achieving
good results on the dataset with limited lumen labels.
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• We proposed a general network layer, DO-Layer, to adapt
to the situation of classes imbalance. Our DO-Layer drops
well-segmented regions in the output map and weights
the classes dynamically, which will adapt to the training
process to balance the categories. The network will give
hard-to-segment regions more training opportunities and
show superior performance on the minority classes.

For the rest of the paper, we list the related work in
Sec. II. Next, we demonstrate the details of our proposed
Examinee-Examiner Network (EE-Net) in Sec. III, including
Centerline Gaussian Mask Module (CGM Module), Examinee-
Examiner Learning (EE-Learning), and Drop Output Layer
(DO-Layer). Then the dataset description, experiment settings,
and evaluation measures are illustrated in Sec. IV. To verify
the superiority of our method, Sec. V shows the results
and analysis of comparison and ablation experiments. Finally,
Sec. VI summarizes and discusses the whole paper.

II. RELATED WORK

Recently, traditional methods and deep learning methods
have made progress in coronary lumen segmentation. How-
ever, accurate coronary lumen segmentation with stenoses is
still an open problem.

A. Vessel Segmentation

Numerous works have made efforts on vessel segmenta-
tion due to the significance for CAD diagnosis and preop-
erative planning. Some traditional methods [10], [11], such
as region-growing approaches [12], level-set methods [13],
centerline-based methods [8] and other traditional meth-
ods [14], [15], have obtained good results in vessel seg-
mentation scenarios. But, these methods rely on hand-crafted
features and the generalization ability is limited in the scene
with changeable morphological structures. With the develop-
ment of deep learning, vessel segmentation based on deep
learning [16]–[23] is used owing to their efficiency, high
accuracy and powerful generalization ability. Chen et al. [16]
proposed a fully automatic framework that adopts a paired
multiscale 3D deep convolutional neural networks to segment
the coronary artery. Huang et al. [18] presented approaches
with 3D U-Net for both CACT data with and without center-
line. Wolterink et al. [24] proposed to use graph convolutional
networks(GCNs) to predict the spatial location of vertices
in a tubular surface mesh that segments the coronary artery.
Kong et al. [19] proposed a tree-structure convolutional gated
recurrent unit model to learn the anatomical structure of
the coronary artery and conduct voxel-wise segmentation.
Gu et al. [20] proposed a global feature embedded network,
which contains semantic information and detailed features,
for coronary arteries segmentation. Jun et al. [21] proposed
a nested encoder-decoder architecture for the main vessel
segmentation in coronary angiography. Mou et al. [22] pro-
posed a generic and unified convolution neural network for the
segmentation of curvilinear structures and illustrate in several
2D/3D medical imaging modalities. Some work [25], [26]
uses the auto-context strategy, which will help the network
get better segmentation results through iteration.

However, these methods cannot meet the requirements of
our task because of some limitations: 1) Lack of comprehen-
sive assessment. Their works are devoted to coronary artery
segmentation ignoring the effect of stenosis. Therefore, the
segmentation performance is unknown for data with stenotic
lesions. 2) Dependence on accurately labeled datasets. These
methods are fully supervised approaches. These supervised
models are trained based on accurately labeled datasets that
need labor-intensive annotations, and if the labeled data are
limited, their generalization ability will be weak.

B. Weakly Supervised Learning

Weakly supervised learning has great potential in improving
the generalization ability of neural networks [4] via utilizing
partial labels [27], [28], pseudo labels [29], [30], image-
level labels [31], regional bounding box [32] and consis-
tency constraint in co-segmentation [33], [34]. 1) Partial
labels. Due to the difficulty in obtaining the complete annota-
tions, some methods using partial labels have been proposed.
Kervadec et al. [27] proposed a differentiable penalty, which
enforces inequality constraints directly in the loss function,
for weakly supervised segmentation. Peng et al. [28] pro-
posed a method, based on the alternating direction method
of multipliers (ADMM) algorithm, to train a CNN with
discrete constraints and regularization priors. 2) Pseudo labels.
Some methods have been proposed to better used the pseudo
labels. Zhang et al. [29] proposed a weakly supervised train-
ing framework that learns from noisy pseudo labels generated
from automatic vessel enhancement for weakly supervised
vessel segmentation in X-ray Angiograms. Ma et al. [30]
proposed a weakly supervised model with a multi-scale class
activation map for GA segmentation in Spectral-Domain Opti-
cal Coherence Tomography images. 3) Image-level labels.
Weakly supervised semantic segmentation uses image-level
labels to identify the object regions. Meng et al. [31] pro-
posed a new strategy employing a class-level multiple group
cosegmentation and fusion method to deal with the image-level
labels. 4) Regional bounding box. Bounding box annotations
are widely used due to their simplicity and low-annotation
cost. Kervadec et al. [32] proposed a weakly supervised learn-
ing segmentation based on several global constraints derived
from regional bounding box. 5) Consistency constraint in co-
segmentation. Chen et al. [33] proposed a method for jointly
matching and segmenting object instances of the same cate-
gory within a collection of images. Souly et al. [34] proposed
a semi-supervised framework based on GANs to force the real
samples to be close in the feature space by adding the large
fake visual data, thus improving multiclass pixel classification.

However, these weak-supervised methods cannot be applied
to our task directly due to some limitations: 1) Small and
changeable vascular segmentation scenarios. It is difficult for
these methods to construct accurate regularization constraints
such as sizes and boundaries according to the small and
changeable vessels. Therefore, the generalization results are
weak in our task of accurate coronary segmentation. 2) Loss
of continuity. The weakly-labeled data used to obtain pseudo
labels will lose the continuous information easily. Therefore,
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Fig. 2. Our EE-Net for accurate coronary lumen segmentation: Stage 1: Examiner Learning. E2-Net learns the mapping relationship from the lumen labels
to the weakly supervised labels, which is used in the next stage to facilitate the supervision from the specific label. Stage 2: Examinee Learning. E2-Net is
fixed as an examiner module. At this stage, E1-Net will send the segmentation result as an input into the fixed E2-Net, and take the output of the E2-Net as
the supervision information. The loss calculated from the output will be fed back to E1-Net as the evaluation standard, to optimize the final segmentation of
the E1-Net.

the limited labels that bring inaccurate optimization objectives
will interfere with the training process and deteriorate the
performance of the model in our task.

C. Class Imbalance

Class imbalance means the distribution of examples across
the known classes is biased or skewed in the dataset, a class
imbalance will cause an inefficient training process and the
degenerate models. The weighted cross-entropy loss [35]
makes the network pay more attention to the minority class by
giving higher weight, but the weight is a hyper-parameter and
is difficult to determine. Based on Dice Loss, the Generalized
Dice Loss (GDL) [36] weight contribution of each label by the
inverse of its volume, thus reducing the well-known correlation
between region size and Dice score. The Focal Loss [37]
down-weights the loss assigned to well-classified examples
and focuses training on a sparse set of hard examples. The hard
region adaptation (HRA) loss [38] samples the loss function
according to the segmentation quality so that the network will
attach significance to the hard-to-segment region dynamically,
thus keeping the class balanced.

However, the GDL loss does not distinguish the difficulty
of hard regions in the segmentation task which leads to local
defects easily and the Focal Loss adopts two hyper-parameters
which should be tuned with a lot of effort and is a static
loss which is not adaptive for the changing of data distribution,
which varies along with the training process.

III. METHODOLOGY

Our method includes four aspects (Fig. 2): 1) Our
proposed Examinee-Examiner Network (EE-Net,
Sec. III-A) adopts the mode of cooperation between the
Examinee Network (E1-Net) and the Examiner Network
(E2-Net). The E2-Net uses the relationship between the lumen
labels and the continuous topological features extracted from
the centerlines as a prior condition, to constrain the E1-Net to
satisfy the segmentation results with a continuous topological

TABLE I

THE DETAILED DEFINITIONS OF SYMBOLS IN OUR PAPER

structure. 2) Our proposed Centerline Gaussian Mask Module
(CGM, Sec. III-B) generates a 3D Gaussian mask according
to the morphological features of the centerline to enhance
the continuous topological structure features, thus helping
the E2-Net to be more sensitive to the centerline composed
of voxels to generate geometric constraints. 3) Our proposed
Examinee-Examiner Learning (EE-Learning, Sec. III-C) is
based on our EE-Net. When the weakly labeled data with the
centerline labels only is available, the E2-Net evaluates the
segmentation results from the E1-Net directly using the prior
conditions. Therefore, the E2-Net will guide and constrain the
segmentation results from the E1-Net to achieve good results
on the weakly labeled dataset.

4) Our proposed Drop Output Layer (DO-Layer, Sec. III-D)
drops well-segmented regions in the output map and weights
the classes dynamically to give the hard-to-segment regions
more training opportunities thus balancing classes so that our
EE-Net will adapt to the situation of class imbalance. All the
symbols mentioned in this paper are defined in Tab. I.

A. EE-Net for Accurate Coronary Lumen Segmentation
Our proposed Examinee-Examiner Network (EE-Net)

adopts the mode of cooperation between the Examinee
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Network (E1-Net) and the Examiner Network (E2-Net). The
E1-Net realizes the task of coronary lumen segmentation using
lumen labels to learn semantic features from pixel-to-pixel.
While the E2-Net learns the relationship between the lumen
labels and the continuous topological features extracted from
the centerlines as a prior condition. Based on the prior condi-
tion, E2-Net generates geometric constraints for the feedback
to evaluate and constrain the E1-Net to satisfy the segmenta-
tion results with a continuous topological structure. Therefore,
our EE-Net combines the semantic features and the geometric
constraints, thus well coping with the fracture in segmentation
caused by stenoses and improving the segmentation quality of
the results.

1) Learning Process of Our EE-Net: As shown in Fig. 2,
our EE-Net has two stages: 1) In the Examiner learning
stage, to help the E2-Net focus on the continuous topological
structure features of the centerline label, the CGM is used to
enhance the centerline label z to get the enhanced centerline
label zM . Then the lumen label y is sent to the E2-Net as an
input, and the output feature map y ′

1 along with the enhanced
centerline zM are sent to the DO-Layer, and the weighted
output ŷ ′

1 and ˆzM are obtained, where ŷ ′
1 and ˆzM respectively

represent the prediction result and the label after the class
balance. Afterward, the loss LExaminer is calculated, so that
the E2-Net learns the continuous topological structure features
contained in the lumen. 2) In the Examinee learning stage,
E2-Net is fixed in this stage. Image x is sent to the E1-Net as
an input, and the obtained output y ′

2 is sent to the DO-Layer
together with the lumen label y. Then the weighted results ŷ ′

2
and ŷ are obtained to calculate the segmentation loss LSeg.
In this process, E1-Net focuses on recognizing lumen-like
regions and learning to discard most of the negative samples.
Afterwards, the output y ′

2 is sent to the E2-Net E2 as an
input, and the obtained output feature map y ′

3 along with
the enhanced centerline label zM are sent to the DO-Layer
to get the weighted results ŷ ′

3 and ˆzM and calculate the
constraint loss LCon . In this process, Examiner extracts the
continuous structural features from the lumen prediction using
the knowledge previously learned, to evaluate and optimize
the output results of Examinee, and the learning process is
summarized as (Eq. 1, 2):

In the Examiner learning stage:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zM = CGM(z),

y ′
1 = E2(y),

ŷ ′
1, ˆzM = DO(y ′

1, zM ),

LExaminer = Cross Entropy(ŷ ′
1, ˆzM ),

(1)

In the Examinee learning stage:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ′
2 = E1(x),

ŷ ′
2, ŷ = DO(y ′

2, y),

LSeg = Cross Entropy(ŷ ′
2, ŷ),

y ′
3 = E2(y ′

2),

ŷ ′
3, ˆzM = DO(y ′

3, zM ),

LCon = Cross Entropy(ŷ ′
3, ˆzM )

Ltotal = LSeg + λLCon,

(2)

2) Architecture of Our EE-Net: E1-Net and E2-Net follow
the 3D-Unet framework, where E1-Net uses 4 max-pooling
layers while E2-Net uses 2 max-pooling layers. Each convolu-
tion layer contains a group normalization (GN) and a rectified
linear unit (ReLU). The skip connection is used throughout
the network.

3) Advantages of Our EE-Net: 1) Customized prior con-
ditions: Our E2-Net customizes the prior conditions according
to the specific tasks. In our task, to improve the continu-
ity of the segmentation, we use the continuous topological
structure features of the centerline as the prior conditions.
2) Segmentation continuity improvement: Our E2-Net uses
the prior conditions to generate the geometric constraints
for the feedback to evaluate and optimize the E1-Net through
the backpropagation. Therefore, the segmentation presents a
continuous structure and produces better segmentation quality
in regions with stenoses. 3) A plug-and-play module: Our
E2-Net is a plug-and-play module that will not participate
in the test phase. Hence, there are no additional parameters,
and the performance is improved under the same computing
resources.

B. CGM Module for Features Enhancement

Our proposed Centerline Gaussian Mask (CGM) Module
is used in our E2-Net, which generates a 3D Gaussian mask
zM according to the morphological features of the center-
lines, to enhance the continuous topological structure features
learning, thus helping the E2-Net to be more sensitive to the
centerline to generate geometric constraints.

1) Implement of Our CGM Module: There are only inde-
pendent and scattered voxels in one cross-section of the
centerline label, and the network is insensitive to a very small
number of voxels, which will make the network lose the
continuity information of the centerline in the training process.

Formally, it is formulated as (Eq. 3, 4):

Mi j k = max
n=1,2,··· ,N

G(i, j, k; xn, yn, zn, σwn , σhn , σdn ) (3)

G(i, j, k; x, y, z, σw, σh , σd )

= e
−( (i−x)2

2σ2
w

+ ( j−y)2

2σ2
h

+ (k−z)2

2σ2
d

)
(4)

where N is the number of voxels in an image, (i, j, k) rep-
resents the coordinates of each voxel, (xn; yn; zn; wn; hn; dn)
is the center coordinates, width, height and depth of the nth
object, and the variances (σwn , σhn , σdn ) of the Gaussian mask
are proportional to the width, height and depth of individual
objects. If these masks have overlaps, we choose the maximum
values.

2) Advantages of Our CGM Module: The centerline labels
have only one voxel in each cross-section, so the network
is easy to ignore such feature information. Therefore, CGM
Module generates the 3D Gaussian mask which enhances
the features of the centerline in each cross-section and enables
the network to be more sensitive to the centerlines and
obtain the continuous topological structure features better, thus
ensuring the continuity of segmentation.
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Fig. 3. The DO-Layer. The label y and output y′ are the inputs of the
DO-Layer. After the processing, weighted label ŷ and weighted output ŷ′ are
the outputs. Weighted by the masked label, hard-to-segment regions will have
more opportunities to be trained.

C. EE-Learning for Weak Supervision

Our proposed Examinee-Examiner Learning (EE-Learning)
is based on our EE-Net. When the weakly labeled data with
the centerline labels only is available, the E2-Net evaluates the
segmentation results from the E1-Net directly using the prior
conditions. Therefore, the E2-Net will guide and constrain the
segmentation results from the E1-Net, thus achieving good
results on the dataset with few lumen labels.

1) Learning Process of Our EE-Learning: As shown in
Fig. 2, our EE-Net has two stages, but with the addition of a
large number of training data without lumen labels, the second
stage of EE-Net, Examinee Learning, has been adjusted. For
training data without lumen labels, image x is sent to the
E1-Net as an input. However, there is no accurate lumen
label to evaluate the predicted result, so the obtained output
y ′

2 is directly sent to the fixed E2-Net. E2-Net evaluates the
predicted result through the knowledge obtained from previous
training. The output feature map y ′

3 from the E2-Net along
with the enhanced 3D Gaussian mask zM are sent to the
DO-Layer to get the weighted results ŷ ′

3 and ˆzM and calculate
the constraint loss LCon .

2) Advantages of Our EE-Learning: Our EE-Learning
adapts to datasets with few labels, which has good general-
ization ability and superior segmentation results on weakly
labeled data.

D. DO-Layer for Dynamical Class Balance

1) Structure and Operation of DO-Layer: As shown in
Fig. 3, the L1 distance of the label yn and the output y ′

n
(where n represents the different categories) is calculated, and
the binary threshold is used and obtain the output masks wn

which prints out the hard-to-segment regions. Then, the label
yn and predicted y ′

n will be masked by the output mask wn for

the masked label wn yn and weighted output wn y ′
n . Meanwhile,

the volume of the remaining regions from the output mask wn

are calculated as a class weight vector w = ∑N
n wn to balance

the classes (where N represents the total number of categories).
Then, the masked label is divided by the class weight vector w
for the weighted label ŷn . The output masks wn can be written
as: Eq. 5, and the weighted label ŷn = wn yn

w and the weighted
output ŷ ′

n = wn y ′
n after weighting. Finally, ŷn and ŷ ′

n are used
to calculate the cross-entropy loss for model optimization.

wn =
{

|yn − y ′
n|, |yn − y ′

n| > 0.1

0, |yn − y ′
n| ≤ 0.1

(5)

2) Advantages of DO-Layer: 1) Adapted training process.
DO-Layer dynamically calculates the output mask w accord-
ing to the optimization in the training process, thus adapting
to the whole training. DO-Layer optimizes each region in
the early stage of training and gives higher weights to the
hard-to-segment regions in the later stage to get more training
opportunities. 2) Dynamical class balance. DO-Layer uses the
dynamical weight, which represents the difference between the
labels and the outputs. During the training process, when the
dominant category changes, the dynamical weight will change
according to the change of the dominant category, thus giving
the inferior category more training opportunities.

IV. EXPERIMENTS CONFIGURATIONS

Our experiments involve two datasets, one is Cardiac
CCTA Data and the other is ASOCA Data. Cardiac CCTA
Data is used to train our EE-Net and show the performance of
our model. ASOCA Data is used to verify the generalization
ability of our method on the cross-dataset tasks.

A. Cardiac CCTA Data

1) Source and Acquisition Protocols: Cardiac CCTA Data
is multi-center and multi-device data. CCTA images from
132 patients whose stenoses were found in the major epicardial
coronary arteries by CTA were selected. Two hospitals in
China (Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital, Shanghai and Beijing Anzhen Hospital, Capital Med-
ical University, Beijing) provided the imaging data. For the
data from the first hospital, a 128-slice multidetector CT (Def-
inition AS, Siemens Medical Solutions, Forchheim, Germany)
was employed for scanning. For the data from the second
hospital, CCTA was performed on three different CT scanners,
256-row detector CT scanner (Revolution CT, GE Healthcare,
Milwaukee, USA), 320–detector row CT scanner (Aquilion
One; Toshiba, Otawara, Japan), dual-source (Somatom Defini-
tion; Siemens, Forchheim, Germany) or dual-source (Somatom
Definition Flash; Siemens, Forchheim, Germany) CT scanner.

2) Detailed Information: According to the data of 132 cases
used in the experiment, the age of patients ranged from 38 to
83 years old, with an average age of 62.2 years. Among
them, there were 99 males and 33 females. In the data, there
are 147 lesions of clinical concern, the average quantitative
diameter stenosis rate is 45.2%, and the minimum lumen area
is 2.13 mm2. Among them, 60 patients had stenosis with a
quantitative diameter stenosis rate of more than 50%.
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3) DATA Processing: CCTA data were annotated in an
image core lab (CardHemo, Med-X Research Institute, Shang-
hai Jiao Tong University) by an experienced analyst using
a commercialized CCTA analysis software (CtaPlus, version
1.0, Pulse medical imaging technology, Shanghai, China).
First, the lumen contours in eight longitudinal cuts through
a straightened MPR image along the coronary artery were
delineated semi-automatically. Then, a senior imaging expert
with 10 years of experience in cardiac imaging performed
quality control on the annotated dataset. The original image
was 512 × 512 per slice, with 200 to 500 slices per image.
Automated centerline extraction techniques were used in our
experiments to extract the centerlines of all data in the pre-
processing firstly. The extracted centerlines were checked and
adjusted by experts to ensure the accuracy of the centerline
if necessary. The coronary lumen boundary was delineated
manually by a trained researcher and verified by a clinician.
Three-fold cross-validation was adopted. 44 of them were used
as a training set and the other 22 as the test set. The remaining
66 images only with the centerlines were used for the weakly
supervised training. The region of interest(ROI) was extracted
and these heart ROIs were cropped into small 3D patches of
288 × 288 × 224 online before been fed into the network due
to the limitation of GPU memory.

B. ASOCA Data

ASOCA Data comes from the 2020 MICCAI Challenge
“Automated Segmentation of Coronal Arteries.” They pro-
vided a training data set of 40 CCTA images with contrast
agent showing the coronary arteries, comprising 20 healthy
patients and 20 patients with confirmed coronary artery dis-
ease. The training data set is used in our paper as the test
data to verify the generalization ability of our method on
the cross-dataset tasks. Annotations produced by three expert
annotators are provided for this data set. Data was collected
using retrospective ECG-gated acquisition (GE LightSpeed
64 slice CT Scanner, USA. The time point used for the
challenge is late diastole (75% cardiac cycle).

C. Training Strategies and Implementation

Other networks and Our EE-Net were all optimized by
Adam with the learning rate of 1 × 10−4. The training batch
size was 1 and the networks were all trained iteratively with
400 epochs. Our implementation used Pytorch.

D. Evaluation Measures

To demonstrate the advantages of our proposed EE-Net,
we performed comparative experiments and ablation stud-
ies. The comparison methods include the classical segmen-
tation methods such as V-Net [39], 3 D U-Net [40], 3D
Attention U-Net [41] and DenseBiasNet [38], the-state-of-art
methods for vessel segmentation such as CS2-Net [22] and
weakly-supervised method such as Partial cross-entropy loss
[27], [42], Discretely-constrained deep network [28] and AR-
SPL [29]. These models were trained on the same dataset
with the same implementation and evaluated by the metrics

as follows. All the metrics were calculated for each image
and the mean values were obtained in the end.

1) Mean Dice Coefficient (Dice): The Dice coefficient was
used to evaluate the similarity of the foreground regions in the
two images according to Eq. 6.

Dice(P, G) = 2 |P ∩ G|
|P| + |G| (6)

where P represents the segmentation in the predicted result
and G represents the ground truth of the coronary lumen.

2) Relavant Dice Coefficient (RDice): Considering some
unlabeled side-branches or distal parts of the coronary arteries
will be segmented by our method, we propose a relative-
dice coefficient (RDice) to evaluate the results accurately.
Endings and branches not related to the FFR calculation are
not annotated. However, these regions can be segmented by
networks. Inspired by [43], we propose RDice (Eq. 7):

RDice = 2 |(PM ) ∩ G|
|PM | + |G| (7)

where PM = P ∩ M . The ground truth G was expanded to
a mask M by a morphological expansion operator with a 3D
spherical kernel of 8mm diameter. Then the mask M intersects
the prediction P to exclude the regions that are not defined in
the ground truth GM .

3) Stenoses Dice Coefficient (SDice): To objectively verify
the effectiveness of our results in regions with stenoses,
we propose a Stenoses dice coefficient(SDice). The SDice can
be written as Eq. 8:

SDice = 2 |(PS) ∩ S|
|PS | + |S| (8)

where PS = P ∩ S. We use pre-annotated stenoses label S
to intersect the predicted result P to include the regions that
indicate the regions with stenoses.

4) Overlap Until First Error (OF) and the Overlap (OV):
To objectively verify the continuity of the segmentation, the
overlap until first error(OF) [43] is used to evaluate the first
fracture position of the extracted vessel centerline. Meanwhile,
the overlap(OV) [44] is used to evaluate the completeness of
the extracted vessel centerline.

5) Hausdorff Distance: Hausdorff Distance [45] is also
widely used to describe the similarity between two sets of
point sets. For thin and small structures, it is recommended to
use the distance-based metric.

V. RESULTS AND DISCUSSION

Our proposed Examiner-Examinee Network adapts to the
cases with stenoses, datasets with few labels, and ensures
the class balance. In this paragraph, we will evaluate and
analyze the effectiveness of our proposed EE-Net in four-
folds. Firstly, the performance of our proposed method and
the classic methods on the 3D coronary lumen segmentation
task with stenosis are verified and compared by the following
metrics. The visual effects of different methods are simultane-
ously shown (Sec. V-A). Then, we analyzed the effectiveness
of our proposed EE-Net to improve the continuity of the
segmentation, the generalization ability of the network, and the
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TABLE II

OUR EE-NET HAS ACHIEVED THE MOST COMPETITIVE RESULTS WHERE L INDICATES THE
USE OF THE LUMEN LABELS AND C INDICATES THE USE OF THE CENTERLINES

TABLE III

EACH MODULE IN OUR EE-NET PLAYS A VITAL ROLE. CGM
REPRESENTS THE CENTERLINE GAUSSIAN MASK, DO

REPRESENTS THE DROP OUTPUT LAYER AND WS
REPRESENTS THE WEAK SUPERVISION

help of the Drop Output Layer to deal with the class imbalance
(Sec. V-B). Next, we analyzed the performance of our EE-Net
on the ASOCA Data1 [46], which shows that our network has
strong generalization ability (Sec. V-C). Finally, the parameters
related to the framework are also discussed (Sec. V-D).

A. Evaluation Metrics Advantages

Our proposed EE-Net has a strong performance both in
visual effects and various indicators.

1) Quantitative Evaluation: The advantages of our method
on each metric are demonstrated in Tab. II and the ablation
experiments of our method are shown in Tab. III. Our proposed
EE-Net achieves the best segmentation results compared with
other methods with Dice of 76.2%, RDice of 79.1%, and
SDice of 77.8%, and their corresponding standard deviations
are 4.0%, 3.7% and 7.0%. Compared with the results of the
classical segmentation network with Partial CE, our method
achieves at most 3.5% Dice, 2.8% RDice, 3.2% SDice, 2.2%
OV, 7.1% OF of LAD, 6.5% OF of LCX and 4.1% OF of
RCA improvements and at least 1.8% Dice, 0.9% RDice, 1.2%
SDice, 0.3% OV, 4.0% OF of LAD, 0.2% OF of LCX and
2.3% OF of RCA improvements.

1https://asoca.grand-challenge.org/Home/

2) Qualitative Evaluation: Our proposed EE-Net has pow-
erful visual superiority in any aspect (Fig. 4). The case1,
case2, case3, and case4 respectively illustrate the competi-
tive performance of our EE-Net from four angles: overall
segmentation effect, the case with stenoses, hard-to-segment
regions, and false segmentation. Compared with the ground
truth, our EE-Net achieves the best visual superiority in these
cases. (1) Case1 shows the overall segmentation effect. The
yellow box shows the fracture in segmentation, especially at
the bifurcation and the end of vessels. (2) Case2 shows the
segmentation effect on cases with stenosis. The yellow box
indicates that our EE-Net segments the complete trunk in
the regions with stenoses, while other methods have different
degrees of fracture in the trunk. (3) Case 3 shows the seg-
mentation effect in hard-to-segment regions. The yellow box
shows the continuity of our EE-Net in segmentation of hard-
to-segment regions, such as at the bifurcation and the end of
vessels. (4) Case 4 shows the situation of false segmentation.
Due to the influence of other vessel-like structures, other
methods are insensitive to distinguish these structures, which
will lead to serious false segmentation. However, our EE-Net
has the ability to segment the coronary artery lumen accurately.

B. Ablation Experiment Analysis

As shown in Tab. III, the ablation experiments prove the
importance of our EE-Net, EE-Learning strategy for weakly
supervised images and our DO Layer. (1) To prove the
effectiveness of the DO layer. The first and second lines of
the table and the fourth and sixth lines of the table show
the performance of the DO layer in our model. With the
addition of the DO Layer, Dice increased by 1.4% and 1.6%,
RDice increased by 1.2% and 2.0%, and SDice increased
by 1.4% and 1.4%, respectively. The results show that DO
Layer plays a key role in the model, helping the network to
distinguish hard-to-segment regions and keep class balance.
(2) To prove the effectiveness of EE-Net in full supervision.
The first and third lines of the table show the performance
of the EE-Net in full supervision. With the addition of the
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Fig. 4. Our proposed framework realizes accurate coronary lumen segmentation and has powerful visual superiority, especially in any aspect. The case1,
case2, case3, and case4 respectively illustrate the competitive performance of our EE-Net from four angles: overall segmentation effect, the case with stenoses,
hard-to-segment regions, and false segmentation.

EE-Net, Dice increased by 0.4%, RDice increased by 0.3% and
SDice increased by 0.6%, respectively. The results show that
EE-Net provides additional continuous topological structure
information from the centerline for the data with lumen labels
in full supervision. (3) To prove the effectiveness of EE-Net for
weak supervision. The third and fourth lines of the table and
the fifth and sixth lines of table show the performance of the
EE-Net for weakly supervised labels. With the addition of the
EE-Net, Dice increased by 1.4% and 1.2%, RDice increased
by 1.4% and 0.8% and SDice increased by 0.9% and 1.0%,
respectively. The results show that EE-Net and EE-Learning
make better use of the weakly supervised images only with
centerline labels.

1) EE-Net for Cases With Stenoses: To demonstrate the seg-
mentation performance of our EE-Net in regions with stenoses
more clearly, Fig. 6 shows the MPR view of a segmentation
result for an entire artery. Compared with the ground truth, our
proposed EE-Net has a good continuous segmentation effect
in regions with stenoses, while other methods have different
degrees of fracture problems.

2) EE-Net for Partial Annotations: Our proposed
EE-Learning shows good generalization performance when
the annotations are incomplete. To simulate the partially
annotated scenario, random destruction was performed on
the lumen labels of the labeled data. We destroyed 20%,
40%, and 60% of the original lumen labels respectively. For
comparison, we used the backbone network 3D U-Net and the
network with the Partial CE as the weakly supervised model.

Three-fold cross-validation was used to verify the results
of our EE-Net with destroyed labeled data. Our proposed
EE-Learning shows better results than other methods when
the completeness of the lumen label is decreased (Fig. 7).
As the completeness of the lumen label decreases, the
comparison of Dice between our EE-Net and other methods
shows the good generalization ability of our method. When
the completeness of the lumen label is decreased to 60%
of the original lumen label, the Dice of our EE-Net is 5%
higher than 3D U-Net and 3.4% higher than 3D U-Net
with Partial CE. With the help of EE-Learning, the network
obtains weak supervision information from the centerline,
thus obtaining relatively better results on incomplete lumen
labels.

3) EE-Learning for Dataset With Fewer Labels: Our pro-
posed EE-Learning shows good stability when the number of
labeled training data decreases (Fig. 8). The Dice is compared
when the amount of labeled training data decreases gradually.
As the number of labeled data decreases, the comparison
of Dice between our EE-Net and U-Net shows the good
generalization ability of our method. When the amount of
labeled data is decreased to 5 images, the Dice of our EE-net is
15.4% higher than U-Net. EE-Net is more stable than U-Net
in the process of data reduction. U-Net declined by 18.8%,
while our EE-Net only declined by 6.9%. With the help of EE-
Learning, the network obtains weak supervision information
from the centerline, thus reducing the dependence on the
amount of labeled data.
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Fig. 5. Our EE-Net shows a good segmentation performance on the external testing dataset ASOCA data. The results demonstrate that our EE-Net has a
strong generalization ability. The case1 and case2 respectively illustrate the competitive performance of our EE-Net from two angles: overall segmentation
effect and case with stenoses.

Fig. 6. MPR view of a segmentation result for an entire artery. Compared with
the ground truth, our proposed EE-Net has a good continuous segmentation
effect in regions with stenoses, while other methods have different degrees of
fracture problems.

4) CGM Module for Centerline Features Enhancement: The
centerline features enhancement (Tab. III) of our CGM module
plays a significant role when the network uses the features of
the centerline. The introduction of CGM has brought about
an increase of 0.6% in the SDice index which reflects the
segmentation quality in regions with stenoses.

5) Drop Output Layer for Class Balance: As revealed in
Fig. 9, our proposed Drop Output Layer drops well-segmented
regions in the output map and weights the classes dynamically
to give the hard-to-segment regions more training opportuni-
ties thus balancing classes. At the initial stage of training, the
large specific gravity means that the background and the lumen
to be segmented are in a state of class imbalance. With the
help of the DO-Layer, in the first 100 rounds, the proportion
dropped rapidly approaching 1. In the later training process,
the proportion gradually stabilized.

C. Evaluation on ASOCA Data

Quantitative Evaluation: As demonstrated in Tab. IV, our
EE-Net has a good generalization ability in ASOCA Data.
It is worth noting that, our proposed EE-Net shows good
generalization performance when tested on the training dataset
of ASOCA data compared with other methods with Dice of

Fig. 7. When the lumen label is gradually destroyed, the Dice comparison
between our EE-Net and U-Net shows that our method achieves relatively
better results on incomplete lumen labels. When the completeness of the lumen
label is decreased to 60% of the original lumen label, the Dice of our EE-Net
is 10.0% higher than U-Net. When the completeness of the lumen label is
decreased to 40% of the original lumen label, the neural network has no
complete generalization ability to obtain better segmentation results.

72.7%, RDice of 76.3%, OV of 87.6%, LAD OF of 91.1%,
LCX OF of 82.2%, RCA OF of 91.4% and Hausdorff Distance
of 3.71 voxels.

To evaluate our EE-Net objectively, the evaluation on differ-
ent cases proves that our EE-Net achieves competitive results
not only in diseased cases but also in healthy cases.

1) Results in Healthy Cases: Dice and RDice are calculated
on healthy data (Tab. V). Our EE-Net shows good general-
ization ability with the Dice of 75.3% which increased by
2.4%, RDice coefficient of 79.0% which increased by 3.4%
compared with 3D U-Net [40]. This result revealed our EE-Net
achieves great competitive results on healthy cases.

2) Results in Diseased Cases: Dice and RDice are also
calculated on the diseased data (Tab. V). Our EE-Net shows
good segmentation continuity and generalization ability with
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TABLE IV

OUR EE-NET SHOWS GOOD GENERALIZATION PERFORMANCE WHEN TESTED ON THE TRAINING DATASET OF ASOCA DATA

Fig. 8. As the number of labeled data decreases, the comparison of Dice
between our EE-Net and U-Net shows the generalization ability of our method.
When the amount of labeled data is decreased to 5 images, the Dice of our
EE-Net is 15.4% higher than U-Net. EE-Net is more stable than U-Net in the
process of data reduction. U-Net declined by 18.8%, while our EE-Net only
declined by 6.9%.

the Dice of 70.0% which increased by 4.2%, RDice coefficient
of 73.5% which increased by 4.9% compared with 3D U-Net
[40]. Stenosis brings great challenges to our task, but this
result reveals our EE-Net has great potential to realize accurate
coronary lumen segmentation in cases with stenoses.

Qualitative Evaluation: Our EE-Net shows good general-
ization performance when tested on the training dataset of
ASOCA Data (Fig. 5). The case1 and case2 respectively
illustrate the competitive performance of our EE-Net from two
angles: overall segmentation effect and case with stenoses.
Compared with the ground truth, our proposed EE-Net
achieves the best segmentation in these cases. (1) Case1
shows the overall segmentation effect. Compared with other
methods, our EE-Net has the best integrity in segmentation
results, especially in some hard-to-segment regions, such as
bifurcation and regions with stenoses. (2) Case2 shows the
segmentation effect on cases with stenosis. The white box
shows the stenoses. The yellow box indicates that our EE-Net

Fig. 9. The ratio of the background and the lumen in regions concerned
by the network during the training process shows the importance of our DO
Layer for dynamically balancing classes. When the DO layer is not used, the
ratio fluctuates around 1000. After the DO layer is used, the ratio is steadily
lower than 10, and gradually approaches 1 in the later stage of training, which
means class balance is realized.

TABLE V

OUR EE-NET HAS A SUPERIOR GENERALIZATION ABILITY ON BOTH

HEALTHY DATA AND DISEASED DATA

segments the complete trunk in the regions with stenoses,
while other methods have different degrees of fracture in the
trunk.
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TABLE VI

HYPER-PARAMETER ANALYSIS. THE PARAMETER OF BACKPROPAGATION
LOSS (λ) IS STUDIED TO ANALYZE THE EFFECTS

D. Parameters Analysis

As shown in Tab. VI, we performed ablation experiments
on the parameter of backpropagation loss(λ) to analyze the
effects of the parameter. The results show that our EE-Net
achieves the best performance when λ = 1.

VI. CONCLUSION

In this study, we proposed a novel weakly supervised model,
Examinee-Examiner Network, to achieve accurate coronary
lumen segmentation with stenoses for the first time. 1) We
proposed an EE-Net to cope with the fracture in segmentation
caused by stenoses by combining the semantic features of
the lumen and the geometric constraints of the continuous
topology obtained from the centerline. A CGM Module was
proposed to deal with the insensitiveness of the network
to the continuity topology information of the centerline by
generating the Gaussian mask to enhance the features of
the centerline. 2) We proposed a weakly supervised learning
strategy, EE Learning, based on our EE-Net to handle the
situation where only weakly labeled data is available by using
our EE-Net to guide and constrain the segmentation with
the customized prior conditions. 3) We proposed a general
network layer, DO Layer, to adapt to the class imbalance
by dropping well-segmented regions and weights the classes
dynamically.
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