

Dynamic Snake Convolution

based on Topological Geometric Constraints for Tubular Structure Segmentation

Yaolei Qi

yaolei710@foxmail.com

Laboratory of Imaging Science and Technology, LIST Southeaset University, China

I Importance —— Segmentation

Coronary Artery Disease Number one in lethality

> Coronary Artery Stenosis Compress blood vessels

CT-FFR (Ko JACC 2017)

CT-FFR can detect stenosis non-invasively
 CT-FFR depends on Computational Fluid Dynamics
 CFD relies on well-delineated coronary lumen

I Challenge —— Segment Anything

I Challenge — The inaccurate results

I Challenges

Challenge 1

Thin and fragile local structure

Challenge 2 Complex and variable global morphology

I Motivation

展 耀 磊

I Motivation

Wandering outside the target

- 1. Since the **<offset>** is not constrained, which is learned completely freely
- 2. Due to the special features of the tubular structure, such as: 'thin', 'wide distribution'...

I DSCNet

<u>原文链接 https://arxiv.org/abs/2307.08388</u> 知乎解析 https://zhuanlan.zhihu.com/p/644206121

II Dynamic Snake Convolution

- 1. Dynamic Snake Convolution:
- Dynamically adapt to the tubular structure
- 2. Multi-view Feature Fusion Strategy:
- Fuse Feature from multi perspective
- 3. Topological Continuity Constraint Loss:
- Use Persistent Homology to constrain continuity

$$K = \{(x-1, y-1), (x-1, y), \cdots, (x+1, y+1)\}$$
(1)

$$K_{i\pm c} = \begin{cases} (x_{i+c}, y_{i+c}) = (x_i + c, y_i + \Sigma_i^{i+c} \Delta y), \\ (x_{i-c}, y_{i-c}) = (x_i - c, y_i + \Sigma_{i-c}^i \Delta y), \end{cases}$$
(2)

$$K_{j\pm c} = \begin{cases} (x_{j+c}, y_{j+c}) = (x_j + \Sigma_j^{j+c} \Delta x, y_j + c), \\ (x_{j-c}, y_{j-c}) = (x_j + \Sigma_{j-c}^j \Delta x, y_j - c), \end{cases}$$
(3)

$$f^{l}(K) = \{\underbrace{\sum_{i} w(K_{i}) \cdot f^{l}(K_{i})}_{f^{l}(K_{x})}, \underbrace{\sum_{j} w(K_{j}) \cdot f^{l}(K_{j})}_{f^{l}(K_{y})} \}$$
(6)
$$T^{l} = (\underbrace{f^{l}(K_{x}), f^{l}(K_{y})}_{T_{1}^{l}}, \underbrace{f^{l}(K_{x}), f^{l}(K_{y})}_{T_{2}^{l}}, \cdots, \underbrace{f^{l}(K_{x}), f^{l}(K_{y})}_{T_{m}^{l}}, \underbrace{f^{l}(K_{y})}_{T_{m}^{l}} \}$$
(6)

- 1. Dynamic Snake Convolution:
- Dynamically adapt to the tubular structure
- 2. Multi-view Feature Fusion Strategy:
- Fuse Feature from multi perspective
- 3. Topological Continuity Constraint Loss:
- Use Persistent Homology to constrain continuity

$$\begin{cases} r^{l} \sim \text{Bernoulli}(p) \\ \hat{T}^{l} = r^{l} \cdot T^{l} \\ f^{l+1}(K) = \Sigma^{\lfloor m \times p \rfloor} \hat{T}_{p} \end{cases}$$

I Persistent Homology

Betti Data

- 1. Dynamic Snake Convolution:
- Dynamically adapt to the tubular structure
- 2. Multi-view Feature Fusion Strategy:
- Fuse Feature from multi perspective
- 3. Topological Continuity Constraint Loss:
- Use Persistent Homology to constrain continuity

$$\begin{cases} d_H(P_O, P_L) = \max_{u \in P_O} \min_{v \in P_L} \| u - v \| \\ d_H(P_L, P_O) = \max_{v \in P_L} \min_{u \in P_O} \| v - u \| \\ d_H^* = \max\{d_H(P_O, P_L), d_H(P_L, P_O)\} \end{cases}$$

 $\mathcal{L}_{TC} = \mathcal{L}_{CE} + \mathcal{L}_{PH} = \mathcal{L}_{CE} + \sum_{n=0}^{N} d_{H}^{*}$

Xiaoling Hu, Fuxin Li, Dimitris Samaras, et al. Topology preserving deep image segmentation. Advances in neural information processing systems, 32, 2019.
 Chi-Chong Wong and Chi-Man Vong. Persistent homology based graph convolution network for fine-grained 3d shape segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 7098–7107, Oct 2021.

II Results

展 耀 amou

II Results

展耀磊

Detecat	Network	Loss	Volumetric (%) ↑					Topology ↓		Distance ↓
Dataset	Network	LOSS	Dice	RDice	clDice	ACC	AUC	β_0	β_1	HD
	UNet	\mathcal{L}_{CE}	80.73 _{±1.77}	$87.94_{\pm 3.32}$	$79.66_{\pm 4.00}$	$96.74_{\pm 0.28}$	88.57 _{±2.44}	$1.209_{\pm 0.342}$	$0.883_{\pm 0.135}$	$6.86_{\pm 0.56}$
	Transunet	\mathcal{L}_{CE}	80.56 ± 2.14	$87.14_{\pm 3.82}$	79.02 ± 5.05	$96.75_{\pm 0.32}$	$88.02_{\pm 2.79}$	$1.210_{\pm 0.309}$	$0.844_{\pm 0.157}$	$6.83_{\pm 0.52}$
	CS ² -Net	\mathcal{L}_{CE}	$77.53_{\pm 2.94}$	$82.55_{\pm 4.10}$	$74.88_{\pm 5.27}$	$96.46_{\pm 0.36}$	$84.73_{\pm 2.82}$	$1.391_{\pm 0.331}$	0.906 ± 0.177	$6.90_{\pm 0.48}$
	DCU-net	\mathcal{L}_{CE}	$80.83_{\pm 1.99}$	$87.73_{\pm 3.60}$	$80.19_{\pm 4.80}$	$96.77_{\pm 0.31}$	$88.45_{\pm 2.67}$	$1.104_{\pm 0.327}$	$0.817_{\pm 0.166}$	$6.84_{\pm 0.58}$
	DSCNet(ours)	\mathcal{L}_{CE}	$81.85_{\pm 1.74}$	$88.93_{\pm 3.36}$	$81.16_{\pm 4.54}$	96.91 _{±0.28}	$89.38_{\pm 2.54}$	$1.094_{\pm 0.301}$	$0.780_{\pm 0.162}$	6.68 _{±0.49}
DRIVE	UNet	$\mathcal{L}_{TC}(\mathbf{ours})$	$80.93_{\pm 1.97}$	$88.00_{\pm 3.41}$	$80.28_{\pm 4.41}$	96.78 ± 0.30	$88.63_{\pm 2.56}$	$1.117_{\pm 0.286}$	$0.797_{\pm 0.151}$	$6.88_{\pm 0.53}$
DRIVE	Transunet	$\mathcal{L}_{TC}(\mathbf{ours})$	$80.79_{\pm 2.11}$	$87.78_{\pm 3.80}$	$79.86_{\pm 4.90}$	$96.76_{\pm 0.32}$	$88.48_{\pm 2.82}$	1.176 ± 0.295	0.818 ± 0.176	$6.83_{\pm 0.51}$
	CS ² -Net	$\mathcal{L}_{TC}(\mathbf{ours})$	$79.69_{\pm 2.31}$	$86.14_{\pm 3.82}$	77.72 ± 5.09	$96.64_{\pm 0.32}$	$87.25_{\pm 2.76}$	1.308 ± 0.334	$0.848_{\pm 0.160}$	$6.93_{\pm 0.45}$
	DCU-net	$\mathcal{L}_{TC}(\mathbf{ours})$	$81.18_{\pm 1.90}$	$87.89_{\pm 3.43}$	80.60 ± 4.54	$96.83_{\pm 0.31}$	88.59 _{±2.57}	1.076 ± 0.313	$0.817_{\pm 0.167}$	$6.80_{\pm 0.56}$
	UNet	clDice	$80.77_{\pm 1.92}$	87.53 ± 3.42	79.93 ± 4.48	$96.77_{\pm 0.31}$	$88.29_{\pm 2.52}$	1.199 ± 0.303	$0.833_{\pm 0.157}$	$6.93_{\pm 0.54}$
	UNet	\mathcal{L}_{WTC}	$80.89_{\pm 1.95}$	$87.85_{\pm 3.55}$	$80.03_{\pm 4.75}$	$96.78_{\pm 0.29}$	$88.53_{\pm 2.64}$	$1.144_{\pm 0.339}$	$0.814_{\pm 0.176}$	$6.79_{\pm 0.47}$
121	DSCNet(ours)	$\mathcal{L}_{TC}(\mathbf{ours})$	$82.06_{\pm 1.44}$	90.17 ±3.04	$82.07_{\pm 4.35}$	96.87 _{±0.24}	90.27 _{±2.32}	$0.998_{\pm 0.312}$	$0.803_{\pm 0.179}$	$6.78_{\pm 0.51}$
	UNet	\mathcal{L}_{CE}	76.90 ± 6.30	$84.07_{\pm 6.46}$	86.87 _{±6.59}	97.97 _{±1.27}	$98.29_{\pm 1.24}$	$1.107_{\pm 0.551}$	$1.505_{\pm 0.467}$	8.11±2.42
ROADS	Transunet	\mathcal{L}_{CE}	75.82 ± 6.83	81.50 ± 6.65	$86.04_{\pm 7.40}$	97.97 _{±1.28}	98.23 ± 1.15	1.105 ± 0.615	1.570 ± 0.663	$8.11_{\pm 2.53}$
	DCU-net	\mathcal{L}_{CE}	77.24 ± 6.30	84.26 ± 6.37	86.98 ± 6.53	$98.03_{\pm 1.14}$	$98.34_{\pm 1.19}$	1.085 ± 0.653	1.474 ± 0.497	$8.04_{\pm 2.53}$
	UNet	$\mathcal{L}_{TC}(\mathbf{ours})$	77.70 ± 6.07	84.80 ± 5.96	87.47 ± 6.31	98.03 ± 1.23	$98.41_{\pm 1.13}$	1.072 ± 0.631	1.401 ± 0.496	$8.04_{\pm 2.72}$
	UNet	clDice	77.37±5.57	84.18 ± 5.99	87.05 ± 6.34	98.03±1.22	$98.40_{\pm 1.12}$	1.079 ± 0.613	1.407 ± 0.603	8.08 ± 2.46
	DSCNet(ours)	\mathcal{L}_{CE}	78.04 ± 5.77	85.35 ± 5.42	87.74±6.02	$98.05_{\pm 1.21}$	98.39 ± 1.19	1.118 ± 0.641	$1.441_{\pm 0.523}$	7.96 ± 2.43
	DSCNet(ours)	$\mathcal{L}_{TC}(\mathbf{ours})$	78.21 _{±5.77}	85.85 _{±5.56}	87.64±5.99	$98.05_{\pm 1.21}$	$98.46_{\pm 1.08}$	$1.053_{\pm 0.523}$	$\textbf{1.396}_{\pm 0.456}$	$7.34_{\pm 2.48}$

Detest	Network	Loss	Volumetric (%) ↑			Topology OF ↑			Distance ↓
Dataset			Dice	RDice	clDice	LAD	LCX	RCA	HD
CORONARY	UNet	\mathcal{L}_{CE}	$76.87_{\pm 5.38}$	$84.48_{\pm 4.55}$	$81.43_{\pm 6.02}$	$0.806_{\pm 0.252}$	$0.847_{\pm 0.239}$	$0.849_{\pm 0.267}$	$7.727_{\pm 3.30}$
	Transunet	\mathcal{L}_{CE}	$76.70_{\pm 6.65}$	$83.23_{\pm 6.72}$	$78.71_{\pm 6.93}$	$0.810_{\pm 0.274}$	$0.694_{\pm 0.307}$	0.816 ± 0.303	$8.580_{\pm 4.11}$
	DCU-net	\mathcal{L}_{CE}	$78.33_{\pm 5.00}$	85.67 _{±4.29}	$82.29_{\pm 5.31}$	$0.833_{\pm 0.219}$	0.746 ± 0.296	0.835 ± 0.300	$7.331_{\pm 3.06}$
	UNet	clDice	$77.86_{\pm 5.25}$	$84.42_{\pm 4.65}$	$82.37_{\pm 5.54}$	$0.817_{\pm 0.256}$	$0.845_{\pm 0.234}$	$0.859_{\pm 0.265}$	$7.412_{\pm 3.68}$
	DSCNet(ours)	\mathcal{L}_{CE}	$79.92_{\pm 5.26}$	$85.98_{\pm 4.60}$	$84.95_{\pm 5.76}$	$0.858_{\pm 0.198}$	$0.853_{\pm 0.241}$	$0.862_{\pm 0.267}$	$6.326_{\pm 2.85}$
	DSCNet(ours)	$\mathcal{L}_{TC}(\mathbf{ours})$	$80.27_{\pm 4.67}$	$86.37_{\pm 4.16}$	$85.26_{\pm 4.98}$	$0.866_{\pm 0.195}$	$0.885_{\pm 0.210}$	$0.882_{\pm 0.250}$	5.787 _{±2.99}

IV Future

https://github.com/YaoleiQi/DSCNet

Dynamic Snake Convolution based on Topological Geometric Constraints for Tubular Structure Segmentation

[NEWS!]This paper has been accepted by ICCV 2023!

[NOTE!!]The code will be gradually and continuously opened!

YaoleiQi DSCNet for 2D segmentation	
Name	Last commit message
A state of the	
🗅 S0_Main.py	DSCNet for 2D segmentation
S1_Pre_Getmeanstd.py	DSCNet for 2D segmentation
S2_Pre_Generate_Txt.py	DSCNet for 2D segmentation
S3_DSCNet.py	DSCNet for 2D segmentation
S3_DSConv.py	DSCNet for 2D segmentation
S3_Data_Augumentation.py	DSCNet for 2D segmentation
🗅 S3_Dataloader.py	DSCNet for 2D segmentation
□ S3_Loss.py	DSCNet for 2D segmentation
S3_Train_Process.py	DSCNet for 2D segmentation

Yaolei Qi yaolei710@foxmail.com Wechat: 13082556710

- Github:
 - https://github.com/YaoleiQi